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Abstract

Piezoceramic wafer (patch) actuators have been used for the excitation and control of vibrations of beam
and plate-like structures. Precise constitutive modelling of the system is important for accurate computer
simulation. In this paper, a finite element model of a beam with a piezopatch actuator adhered to
it is presented. Both the beam and the patch actuator are modelled using Timoshenko beam theory.
Constraints are introduced to ensure continuity of the axial and transverse displacements at the interface of
the two Timoshenko elements. This formulation allows the cross-section of each layer to rotate
individually, which increases the accuracy compared to conventional formulations in the literature. The
displacement field of the system is presented in a factored matrix form, which is utilized to derive the
element mass and stiffness matrices. Theoretical and experimental frequency response functions of a
piezopatch and beam system are obtained with the piezopatch electrically open and closed circuited. Better
agreement is observed between the presented model and experimental results than is obtained using a
Euler—Bernoulli formulation for both layers or Timoshenko theory for only one layer and Euler—Bernoulli
theory for the other. The piezoelectric and dielectric behavior of the piezoceramic wafer are included in the
element model. An optimized vibration absorber using an electrical resistive-inductive shunt circuit on the
piezopatch is also simulated.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials have been proposed for many different engineering applications in the
last 15 years [1,2]. Piezopatch actuators are either bonded to the surface or embedded in the host
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structure. Distributed actuators that are embedded in flexible structures have been applied by
Bailey and Hubbard [3], Alberts and Colvin [4], Newman [5], and Dimitriadis et al. [6]. Many
analytical models have been proposed to predict the interactions between the piezoelectric
actuators and host structures. For the dynamic analysis of the system most researchers have
assumed that the actuator and substructure were bonded to each other perfectly with a negligible
adhesive layer while some have formulated a comprehensive static coupling model, which
encompasses the contribution of the elastic bounding layer.

Crawley and de Luis [2] proposed a uniform strain model for a beam with a piezoelectric
actuator bonded on the surface. The model also incorporated shear effects of the adhesive layer
between the piezoelectric actuator and the beam. Crawley and Anderson [7] developed a
Bernoulli-Euler beam model that assumes the entire cross-section of both host structure and
actuators undergoes consistent Bernoulli-Euler strains, which can predict both extension and
bending modes.

Tylinkowski [8] has proposed a dynamic bending-extension model that includes the bonding
layer. Pietrzakowski [9] showed that a model without shear effects could be reasonable only for
thin piezoactuators. Benjeddou and Trindale [10] have developed a formulation that can simulate
both the extension and shear actuation mechanisms of the beam. In their formulation they have
used Euler—Bernoulli theory for piezopatches and Timoshenko beam theory for the thicker
core layer.

In most other studies Euler beam theory is adapted to describe kinematic deformation [11-13].
Austin and Inman [14] used a Timoshenko beam model for multilayer sandwich beams (without a
piezolayer) that assumed shear stress continuity between the layers. A Ritz—Galerkin approach is
used for construction of the mass and stiffness matrices [13,14]. Van Nostrand and Inman [15]
developed a finite element approach for the construction of the mass and stiffness matrices. Sung
and Kam [16] presented a finite element model for active constrained damping using Mindlin plate
theory where only one rotation of cross-section in two directions (on xz and yz planes) was
introduced. They also discussed active vibration control via electrical activation of the PZT wafer
laminated on the beam. Chattopadhyay and Gu [17] used a hybrid displacement field like the one
presented in this paper where the cross-sectional rotation was allowed for individual layers for a
plate formulation; however, the piezoelectric effect due to deformation was not identified clearly.
Tsai and Wang [18] used an Euler—Beroulli beam for their model and studied characteristics of
active piezoactuators that were passively shunted. Abramovich [19] considered a multi-layer beam
with laminated piezolayers and considered the rotational cross-section; however, in his model all
the layers had the same rotation and the energy dissipation due to the shear among the layers was
disregarded.

Based on the literature review, a finite element model (and its experimental validation)
using a Timoshenko beam model for a base layer and the piezopatch layer adhered to it
is missing. Kusculuoglu et al. [20] recently introduced such a model that treats each
individual layer as a Timoshenko beam, yielding more precise results than the Euler—Bernoulli
beam model. In the present paper, the piezoelectric and dielectric behavior of the piezopatch
layer are incorporated into the model and experimental validation of the model is pro-
vided. Additionally, the model is used to optimize and simulate passive vibration control
of the piezopatch and beam system via an inductive-resistive “‘tuned” absorber shunt on the
piezopatch.
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2. Theory
2.1. Kinematics of deformation

Consider a beam with a piezoceramic patch on it. Fig. 1 shows the deformation of the two
layers. Each layer is assumed to deform as a Timoshenko beam. That is, the cross-section normal
to the neutral axis before deformation remains plain after deformation but not necessarily
perpendicular to the neutral axis.

2.2. Displacement equations

Using Timoshenko beams, the elastic displacement of the aluminum layer is
Uy =up — 2, uz=w. (1)
Similarly, the elastic displacement of the piezolayer is
up =u, —z& Uz =w, (2)
where u; and us are the elastic displacements along the x- and z- axis, respectively. To ensure the

continuity of displacement, u; at the interface of aluminum and piezoceramic layer must be equal.
That is

hy h
wy =5 =y + 2. 3)
To solve u, we have
hp h
up =y — 5~ 2& )
Hence, the elastic displacement for the piezolayer becomes
h h
ulzub—%’w—<§p+2>é, us = w. (5)

Egs. (1) and (5) relate the displacement of an arbitrary point on the base and piezolayers to the
elastic displacement of the neutral axis and the rotation of the cross-section.
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Fig. 1. Schematic of the single beam with piezoelement after deflection.
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2.3. Strain equations

Using Eq. (3) we have

w
U Up
LJ = Sp s | (6)
¢
where S} 1s
5 - [o 1 —z o]. -
1 0 0 0
Strains &, and &,. can be defined as
Exx = %, 28y, = % + % (8)
Substituting Eq. (6) into Eq. (8) yields
w
lsxx =By | |, )
ey, v
¢
where B, and D, are
[0 0 0 O]
0
0 o a 0
0 il
01 2000 0 0 o
By = , Dy = 0 0 0
00 0 010 -1 0 d
e 0 0 0
0 0 0 O
0 0 1 0
(0 0 0 0]
Similarly, the displacement for the piezolayer in matrix form is
w
uj Up
LJ =S, s | (10)
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where
0 1 —h/2 —(h/2+2)
S, = .
1 0 0 0
Substituting Eq. (10) into Eq. (8) yields
w
Exx —BD Up
2| 07 vl
¢
where B, and D, are
[0 0 O
0
0 — 0
ox
0
0 0 —
) ; ox
b P
01 — —(=+4+zJ] 0 0 0 O
Bp— 2 (2 ) 5 Dp_ 0 0
00 0 0 100 -1 9 4 0
0x
0 0 0
0 0 0
0 0 0

2.4. Element stiffness matrices

Strain energy density of the aluminum and the piezolayers are

1 [2Gs(1+vs) 0 ][ exx
Up = XX 2 Xz 5
b=lon 261 0 Gy | | 26,
1 [2G,(1 + 01 e |
U, = dew 260 |20 fox |
2 0 G, | | 26x-
Substituting Eqgs. (9) and (11) into Egs. (12) and (13) yields
w

T T Up
Uy==[w w ¢ <&1D,B,HyB,D, ,

1
2

(== ]

Do o

Pl o o o

31

(11)

(12)

(13)

(14)
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w
Up

1
Up=s5lw Y ¢1D,B)H,B,D, , (15)

where H, and H, are
2G(1+vy) O
0 G,

2G,(1+v,) 0

H, = .
’ 0 G,

5 P —

The constitutive relationship between the electrical displacement D (charge/area normal to z),
mechanical strain of the piezoceramic (&), the electric field E (voltage/length in z) and stress is

[t]1=[Ch —hul| _|. (16)

D

Mechanical stress and the potential energy equation for the piezolayer independent of the electric
displacement are given in Eq. (16). Coupling terms of the stress with the electrical displacement
for the energy expression can be written as

1
Ep/ = E/V —h31D8dV, (1721)
1 aub hb alﬁ hp 65
E,=— [ —hyD|————— | =+ —= )| dV 17b
, 2/V 3 [Gx 2o \2 77 )\a ) (170)
where electric field can be defined as
N
[E]=1-gs1 Bs;l| |- (18)
The potential energy of dielectric effect of the piezolayer can be expressed as
1
E, = —/ (ED)dV. (19)
2Jy,
Eq. (19) can be explicitly written as
1
E, = E/V (B33 D* + g31h31 D* — g31 Ch Deyy) d V. (20)

Mechanical strain used in Eq. (20) occurs in the x direction in the piezolayer. Combining
Egs. (8) and (20), the potential energy E,. can be rewritten as

1 Ou. 0
/V [/%Dz +g31hs D* — g31CﬁD<— i)} dr. (21)

E A6 =— _ 2
pe 9 ox Z@x

Discretizing the elastic displacements w, up, ¥ and & yields
w = Nyw; + Naw! + Naw; + Naw',
ug = Nsu; + Newj, ¥ = Ns; + Ney;, &= Ns¢; + Ne&;. (22)
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Putting Eq. (24) into matrix form yields
[w u, ¥ &' =Ng,

where N and ¢ are

Ny N3 O 0 O N, Ny O O O
N 0O 0 Ns O 0O 0 O N¢e O O

|0 0 0O Ns O 0 O 0 Ng O}
0 0 0 0 Ns O O O 0 Ng
q=[wi Wi ua Y; & wi W oug Y & 1t

Here, N; through N¢ are shape functions. They are
X\ 2 x\3 X\ 2 x\3
M=1-3(p)2(p) . m=3(p) 2(p) s M=a(1-g

xX\2 x X X
= — -] — Ns=1——, Ng=—.
N4 x{(L) L}’ ; r 7L

33

(23)

Substituting Eq. (23) into Egs. (14) and (15) and integrating over the layers yields

Ky = / [NTDZ [ / / (B} HyBy) dydz] DbN] dx,
K, = / [NTDIT [ / / (B, H,B,) dydz] DpN] dx.

24)

(25)

Egs. (24) and (25) suggest that B} HB; and B, H,B, should be integrated with respect to y and
z first and then the result should be integrated with respect to x. Therefore, the element stiffness

matrix becomes
K. =Ky + K,.
Eq. (17) can be discretized as

Coup H = /(ClDlgm + h31)A,SpeDeN dx.

Here, A4, is the area of the piezolayer, and S, and D, are

o -
— 0 O
ox

0
1 By h o 0
Spc_|:0 —= _p:|’ D, =
2 4 4 0 0 2
ox
0
|00 ax ]

(26)

(27)
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2.5. Element mass matrices

The kinetic energy density for the Timoshenko beam is

1 . .
T = §p<u12 +u32). (28)
Therefore, the kinetic energy density of the base and piezolayer become
1 [ ] &
T, = =pp| Ul U3 s (29)
277 1| us
1 [« o] _”.1_
szipp U u3 - (30)
L A u3

Discretizing Eqgs. (6) and (10) using Eq. (17) and then substituting into Eq. (29) and (30) yields
Ty =1p,4" NS} S,Ng, (31)
T,=3%p,4' N'S,S,Nq. (32)

Element mass matrices are obtained by integrating Eqs. (31) and (32) over the layers. That is

My, = p, / [NT [ / (Sgsh)dydz] N] dx, (33)

M,=p, / [NT [ / / (S)Sy) dy dz] N] dx. (34)

Therefore, the element mass matrix is
M, = My + M,. (35)

Virtual work done by the external disturbance force is
oW, = /f(x, 1) ow(x, t) dx. (36)
L
According to the Hamilton’s principle one can write

15}
/ [0Ty + 0T, — 0Ey — 0E, — 0Ep, — 0Ey + W, dt = 0. (37)
N

Having derived the element mass and stiffness matrices, they are assembled and used for the
differential equation

[[Me] 0

q
b

[Ce] 0O
0 R

(K] Coup V
CoupH 1/C

Q.
%

q

D

q
D

0 L ’ (38)

where L is inductance and R is the resistor that can be serially connected to the piezolayer. Also,
C. is the damping matrix for the whole system and Coup V' is a vector that is equal to the
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transpose of the row vector Coup H. The inverse capacitance term shown as 1/C is equal to
1/C = hy(g31ha1 + B3)- (39)

3. Experiment and simulation results
3.1. Validation of the model—example case #1

To validate the finite element formulation two different beams with different boundary
conditions are considered. The first specimen, with material properties given in Table 1, has
simply supported boundary conditions. Dimensions of the beam and the orientation of the PZT
wafer laminated on the beam are given in Fig. 2. Bonding of the PZT onto the base layer and
soldering of the wires were done using Epo-Tek301 epoxy, #30 gage wires, S60 Sn/40Pb solder
and Supersafe #67 DSA liquid flux per manufacturer instructions. In the theoretical calculations
the bond layer is assumed to be even and thin enough such that its effects can be ignored.

Simply supported (SS) boundary conditions are approximated by using brass shim mounts at
either end of the beam that are in turn connected to a rigid fixture. Preventing the vertical
displacement of the beam, yet allowing the cross-sectional rotation on each side of the beam,
simply supported boundary conditions are satisfied [21,22]. The SS beam is excited by a shaker
(Labworks Inc., ET-132-2&203), via an amplifier (Bruel & Kjaer, 2712), and the frequency
response is observed using an Agilent (HP) 35670a spectrum analyzer. Excitation of the beam is in
the 3 (z) direction and the response in the same direction is measured using an accelerometer
(PCB, 309A).

The system, shown in Fig. 3, is first driven in two different configurations: (1) open-circuited
resulting in constant D; and (2) close-circuited (with zero inductance and resistance) resulting in

Table 1
Material properties of the base layer and monolithic PZT wafer for example case #1
Base layer Piezo layer Units
Length L 0.508 0.07239 m
Width b 0.1016 0.07239 m
Thickness h 0.00635 0.0002667 m
Density P 2698.5 7800 kg/m?
Young’s modulus E 6.748 x 10'° 6.2 x 10'° N/m?
Piezo-constants ds — —320x 10712 m/V
ds3 — 650 x 10712 m/V
g31 — —9.5%x107° Vm/N
h31 — —1.35x 10° V/m
Capacitance Cont — 610 x 107° F
Mech. stiffness ch — 13.64 x 10'° N/m?

Dielectric constant ﬁ3T3 — 4.6808 x 107 Vm/C
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Fig. 2. Dimensions (in meters) of the simply supported beam and piezopatch.
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Fig. 3. Experimental setup for the shaker-excited system.
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Fig. 4. Experimental and theoretical frequency response (excitation via shaker) of the (a) open circuit system (————,
proposed FEM; ——, experiment) and (b) closed circuit system (————, proposed FEM; ——, experiment).

constant E. In Fig. 4, experimental results and model predictions via FEA with 20 elements are
compared for both cases in terms of the frequency response. Mechanical damping is measured
experimentally as damping ratios for individual modes using the half-power bandwidth method.
The modal damping matrix C,, is formed using the experimental damping ratios; the nodal
damping matrix C, is determined by pre- and post-multiplying C,, with the model matrix of
eigenvectors.
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Fig. 5. Experimental setup for the system driven by the PZT wafer.
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Fig. 6. Experimental and theoretical frequency response of the system driven by the PZT wafer (————, proposed FEM;

, experiment).

Next a broadband random voltage signal is sent to the PZT wafer, itself, as shown in Fig. 5
(without the inductor and resistor). The proposed FE model predictions are compared with
experimental results in Fig. 6. Good agreement here, as well as in Fig. 4, suggests that the
electrical domain of the piezoelement is also implemented correctly.

It can be argued that the forcing of the system is mainly dominated by the Coup V' vector and
external voltage V, so this simulation cannot fully evaluate the accuracy of the dielectric
effect introduced in the FEM formulation. In order to clarify this, an optimization study is
done for passive vibration control using a resistive—inductive shunt circuit, which is presented in
Section 3.4.

3.2. Advantages of the proposed model

It is proposed that the FE model introduced in this paper provides greater accuracy than
previously introduced models by accounting for independent cross-sectional rotation for each
layer. To test this hypothesis, comparisons are made with other models for the example case
introduced in the previous section. All of the comparisons are presented in Table 2 where natural
frequencies are normalized with respect to the first mode of the corresponding method. (The
experimentally measured fundamental natural frequency is f; = 55.34 Hz with all the different
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Table 2
Experimental, ANSYS and proposed FEM natural frequencies using 40 divisions along the SS beam (example case #1)
Mode (n)  Exp. Assumed mode ANSYS Single Timoshenko Proposed FEM
Mnlfv fulh Dev. (%) fu/fi Dev. (%) fulfi Dev. (%) fu/fi Dev. (%)
1 1.000 1.000  0.0000 1.000  0.0000 1.000 0.0000 1.000  0.0000
2 3.975 3.983  0.0019 4.012 0.0093 3.943 0.0083 3.986  0.0028
3 8.927 9.022  0.0107 9.051 0.0140 8.844 0.0093 8.950 0.0026
4 15.938 16.060  0.0077 16.091  0.0096 15.762 0.0110 15.897  0.0026
5 24.828 24.995  0.0067 25.008  0.0072 24.967 0.0056 24.867 0.0016
6 35.670 36.012  0.0096 35.097 0.0161 37.864 0.0615 35.906  0.0066
7 48.789 49.042  0.0052 49.039  0.0051 49.798 0.0207 49.035  0.0050
8 63.065 64.030  0.0153 65.630  0.0407 64.592 0.0242 64.241  0.0187
9 82.219 81.164 0.0128 82.471  0.0031 85.606 0.0412 81.837  0.0046
10 93.531 100.14 0.0707 101.13 0.0813 102.64 0.0974 93.034  0.0053

methods considered here roughly matching this, within uncertainty limits of the material
properties.) In the third column predictions of a normalized assumed mode solution (spectral
method) that uses 20 modes are presented, a formulation based on Euler—Bernoulli beam theory.
Deviation of the results from the experimental results is reported in the fourth column.

The proposed FE model is also compared to a “single Timoshenko” (conventional FEM)
model whose elements have 4-d.o.f. including w, w', u;, and . This model accounts for rotational
inertia of the base layer and assumes that the cross-sectional rotation of the PZT layer is identical
to the base layer. Unlike the proposed model it does not use an additional d.o.f. for independent
rotation of the PZT layer. Table 2 (columns 7-10) compare the FE formulations (all based on 40
elements) with experiment. The proposed FE model more accurately matches experiment as
frequency increases.

The proposed FE formulation is also compared with results obtained using the commercial
FEA software ANSYS, where the bending natural frequency results are reported in Table 2
(columns 5-6). The coupled field (piezoelectric and mechanical coupling) elements in ANSYS,
such as Planel3, Tran109, Solid5 or Solid98 do not have multi layer capability [26]. Thus, in
order to make a reasonable comparison a Shell91 element is used for meshing, and simply
supported beam boundary conditions are applied with 40 elements along the beam length and 7
elements across its width (280 elements in total) and the fundamental mode is observed at
55.87Hz. The Shell91 element enforces displacement continuity throughout the layers and uses
thin beam theory. An option that comes with the element is called ““sandwich option” which
enables one of the layer’s cross-section to rotate; but, this option can only be used if 3 or more
layers exist, which is not applicable to our study since the beam in this example consists of only 2
layers.

The last two columns of Table 2 contain the results obtained with the proposed FE model and
the deviation from the experiment. The first natural frequency is predicted at 55.74 Hz using the
new FE model, which uses the same meshing configuration as the other two FE solutions
discussed above. In Fig. 8 deviation of the normalized approximated solutions from the
normalized experimental solution is presented for the same study case in a graphical format. In
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Fig. 7. Experimental, proposed FEM and conventional FEM (single Timoshenko) frequency responses for a closed
circuit (constant E) condition (————, proposed FEM; - -- -, conventional FEM; ——, experiment).

Deviation (%)

Mode Number

Fig. 8. Deviation of the normalized approximated solutions from normalized experimental solutions for 10 modes.

(Columns from left to right consecutively, deviation of assumed mode, ANSYS, single Timoshenko and proposed FEM
solution).

this chart deviations of the assumed mode method, ANSYS, single Timoshenko and proposed FE
solution are presented by a column for each of the lowest 10 modes. As frequency increases,
regardless of the thickness of the structure, inertial forces affect the solution more. This
phenomenon can be seen in Fig. 7 where approximated solutions tend to deviate more in the
higher modes except for the proposed FEM. Due to the experimental uncertainties the deviation
between normalized solutions does not increase linearly with the mode number; however, it can be
seen that for almost every single mode the proposed FEM has the minimum deviation. Studying
all of the comparisons presented in Table 2, Figs. 7 and 8, it can be seen that the proposed FE
model presented in this paper more accurately matches experimental results.
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3.3. Advantages of the model in thicker beams—example case #2

In the case studies described above, the improvement in accuracy is not significant as the
thickness of the PZT wafer is very small compared to the base layer. Another specimen (Fig. 9)
that has a thicker piezolayer, with different boundary conditions, is also studied. This specimen,
with dimensions and material properties given in Table 3, has a cantilever (fixed) boundary
condition at one end and is free at the other end. The beam is excited via either electrical
excitation of the PZT wafer or an impulse hammer and the beam transverse motion is measured
using a laser vibrometer. The experimentally measured first natural frequency is 23.4 Hz.

Three different FE solutions and experimental results are presented in Table 4, where all of the
natural frequencies are normalized to the fundamental frequency of the corresponding method.
All FE solutions use 20 divisions along the beam for meshing (Shell91 elements for ANSYS),

0.10922 m

»!

> 0.022352
| — e
,___| r:_'

| 0.1524m | _f —) | 20254
>

Fig. 9. Dimensions (in meters) for example case #2 with thicker piezoactuator and cantilever boundary conditions.

|

w0794 m

0.001378
4

Table 3
Material properties of example case #2

Symbol Base layer Piezo layer Units
Length L 0.1524 0.10922 m
Width B 0.0254 0.022352 m
Thickness H 0.000794 0.001378 m
Density ) 2799 7800 kg/m?
Young’s modulus E 7.37739E10 3.1302E10 N/m?

Table 4
Experimental, ANSYS, single Timoshenko (conventional FEM) and proposed FEM natural frequencies using 20
divisions along the cantilever beam for example case #2

Mode (n) Experiment ANSYS Single Timoshenko Proposed FEM
Inlfi Julfi Dev. (%) JulSi Dev. (%) Julfi Dev. (%)

1 1.000 1.000 0.0000 1.000 0.0000 1.000 0.0000
2 11.197 10.702 0.0442 10.952 0.0218 11.197 0.0000
3 32.051 30.039 0.0628 31.775 0.0086 31.974 0.0024
4 54.872 53.725 0.0209 57.577 0.0493 54.924 0.0009
5 85.043 81.686 0.0395 84.448 0.0070 84.932 0.0013
6 129.231 125.490 0.0289 121.984 0.0561 133.701 0.0346
7 209.915 194.471 0.0736 200.099 0.0468 196.265 0.0650
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where the first natural frequencies are 24.35, 25.5, and 23.56 Hz for the single Timoshenko
(conventional), ANSYS (thin beam) and the proposed FE model, respectively. Here, it can be seen
that improvement of the suggested model is more significant than in the results for the first
example case study due to the increased piezoceramic thickness.

3.4. Passive control application—extension of example case #1

Most of the papers that can be found in the literature about laminated PZT wafers offer a finite
element formulation that can be applicable to active control of a structure. In the formulation
given here, the electric charge that is generated in the PZT wafer due to the applied strain is
evaluated and used to calculate the overall response of the structure; this enables simulation of
electrical passive control capability. In this section, the capability of the proposed FEM to
simulate passive control via an electrically shunted PZT is demonstrated. Using the setup depicted
in Fig. 3 with the electrical circuit closed, optimized inductance and resistance parameters are
evaluated by adapting Den Hartog’s [23] well-known method for optimization of damped
dynamic vibration absorbers to the PZT-shunt configuration. The frequency response in the
vicinity of a specific resonant mode can be targeted for minimization. Using Eq. (38) and
assuming that the structural damping sub-matrix C, is zero the following terms can be defined:

L ) 1 , K Wy
“=ap YT e YTy T (40a-d)
w 0] Coup VM Coup HM
— 2 =2 R =200, T-= . 40e-h
I=9; ¥~k Ku (40e-h)

Here, M and K are diagonal elements of the modal mass and stiffness matrices, respectively, for
the corresponding natural frequency; also, Coup VM, Coup HM and Q are the product matrices
of Coup V', Coup H, Q. and the eigenvectors, respectively. The amplitude ratio can be defined as

2
(2) +& 17
- “ @)

: .
(25) 2= 410~ Vg2 127 - 7

qst

The amplitude ratio can be written independent from the resistance value as Ozer and
Royston [24,25] have shown. After some algebra optimized inductance and resistance values can

be written as
M1 3 T 1
Lypi=—— Rypr=4/z=—Q,—. 42a,b
n=kc TrT\2i—@prc (42a,0)

Using the equations defined above the optimum inductance and resistance for the first mode are
calculated as 23.7H and 250Q, respectively. Using these values the frequency response is
determined for an excitation of 1 N. The force is applied 0.18 m away from the beam end that is
further from the PZT wafer and the FE simulation using the proposed method is conducted with
40 elements. The response of the system with and without the LR shunt at node 14 is shown in
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Fig. 10. Frequency response with and without passive control at the first natural frequency for the system of example
case #1 (————, optimized LR shunt; ——, no passive control).

Fig. 10. The response of the system at the natural frequency is reduced significantly by the LR
shunt under passive conditions.

4. Conclusion

A new finite element model for a beam with a piezoceramic wafer (patch) actuator adhered to it
is developed. Each layer is treated as a Timoshenko beam. Constraints are added to ensure the
continuity of elastic deformation at the interface. This model is used to generate an expression in
factored form for stiffness and mass matrices. These matrices are used in a modal analysis to
obtain the natural frequencies. Two experimental studies have validated the theoretical
developments. It is also observed that the use of the introduced model becomes more important
when the piezoceramic and base layer thickness are large and shear and related rotational inertia
become more important. Minor discrepancies observed between the experimental and proposed
finite element results are due to experimental uncertainties, and the inherent approximate nature
of FE analysis. Also, the system is actively driven by the PZT wafer and a passive control
application is studied for the first mode of the system; it is shown that the model is capable of
simulating both active and passive control.
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Appendix A. Nomenclature

up(x, t) displacement of a point on the neutral axis of the beam along x-axis
up(x, t) displacement of a point on the neutral axis of the piezolayer along x-axis
w(x, t) displacement of a point on the neutral axis of the beam
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Y(x,f) rotation of the cross-section of the beam layer
&(x,1) rotation of the cross-section of the piezolayer
u(x, t) displacement of an arbitrary point along x-axis
usz(x, t) displacement of an arbitrary point along z-axis
hy, thickness of the beam layer

thickness of the piezolayer

shear modulus of the beam layer

shear modulus of the piezolayer

Poisson ratio of the beam layer

Poisson ratio of the piezolayer

mechanical stress (in x direction)

electric field

electric displacement

Ch Young’s modulus with open circuit

h3 piezoelectric constant

ﬁ3T3 dielectric constant for piezoactuator

g mechanical strain for the piezoactuator

A, cross-sectional area of the piezoactuator
L
R
C
Ve

SR RGN

inductance which is serially connected to the piezoactuator
resistor which is serially connected to the piezoactuator
capacitance value of the piezoactuator

control voltage
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